According to GD=7 with German guys your most recent common ancestor (MRCA) lived more than 15 generations ago (~450 years, 16th century).
Certainly not.
It's about
44 generations ago.
At least!
Here is the proof:
TMRCA Calculator
This program calculates the probability that two people have a certain number of generations between them, based on the standard infinite alleles formula of Walsh. It calculates both the probability of being at an exact number of "transmission events" between a certain pair of people and the cumulative probability that the actual number of transmission events is less than a certain value. It can list both result types in a table, or graph either type. In either case the horizontal axis stops at the point where the cumulative probability reaches 97.5% or 10 generations, whichever is longer. Note that the number of transmission events is essentially twice the number of generations back to the MRCA (Most Recent Common Ancestor).
Suggested values for the average mutation rate per marker per generation are given below. These are estimates from all available sources by the author as of October, 2006 and except for the FTDNA 12 set are still not very well determined. The SNP rates are particularly poorly known. More up to date estimates can sometimes be found in the Rootsweb genealogy-dna mailing list archives.
FTDNA Y‑12 STR 0.0020 SMGF STR set (no 464) 0.0021 mtDNA complete genome 3·10
‑6FTDNA Y‑25 STR 0.0023 All 118 available Y STR 0.0025 autosomal, X, and Y SNPs 1·10
‑8FTDNA Y‑37 STR 0.0033 mtDNA HVR 2·10
‑5FTDNA Y‑67 STR 0.0028 mtDNA coding 2·10
‑637 Number of markers
30 Number of markers that match
0.0033 Mutation Rate
Tr. Event. Probability Cumulative
1 0.00000 0.000
2 0.00000 0.000
3 0.00000 0.000
4 0.00000 0.000
5 0.00000 0.000
6 0.00000 0.000
7 0.00000 0.000
8 0.00000 0.000
9 0.00001 0.000
10 0.00001 0.000
11 0.00003 0.000
12 0.00004 0.000
13 0.00006 0.000
14 0.00010 0.000
15 0.00014 0.000
16 0.00020 0.001
17 0.00027 0.001
18 0.00036 0.001
19 0.00048 0.002
20 0.00061 0.002
21 0.00077 0.003
22 0.00095 0.004
23 0.00117 0.005
24 0.00141 0.007
25 0.00168 0.008
26 0.00197 0.010
27 0.00230 0.013
28 0.00266 0.015
29 0.00304 0.018
30 0.00346 0.022
31 0.00389 0.026
32 0.00435 0.030
33 0.00484 0.035
34 0.00534 0.040
35 0.00586 0.046
36 0.00639 0.052
37 0.00693 0.059
38 0.00748 0.067
39 0.00804 0.075
40 0.00859 0.083
41 0.00915 0.093
42 0.00970 0.102
43 0.01024 0.113
44 0.01077 0.123
45 0.01129 0.135
46 0.01179 0.146
47 0.01228 0.159
48 0.01274 0.171
49 0.01318 0.185
50 0.01360 0.198
51 0.01399 0.212
52 0.01436 0.227
53 0.01469 0.241
54 0.01500 0.256
55 0.01527 0.271
56 0.01552 0.287
57 0.01573 0.303
58 0.01592 0.319
59 0.01607 0.335
60 0.01619 0.351
61 0.01628 0.367
62 0.01634 0.384
63 0.01637 0.400
64 0.01637 0.416
65 0.01634 0.433
66 0.01629 0.449
67 0.01621 0.465
68 0.01611 0.481
69 0.01598 0.497
70 0.01583 0.513
71 0.01566 0.529
72 0.01547 0.544
73 0.01526 0.559
74 0.01504 0.574
75 0.01480 0.589
76 0.01454 0.604
77 0.01428 0.618
78 0.01400 0.632
79 0.01371 0.646
80 0.01341 0.659
81 0.01310 0.672
82 0.01279 0.685
83 0.01247 0.698
84 0.01215 0.710
85 0.01183 0.722
86 0.01150 0.733
87 0.01117 0.744
88 0.01084 0.755
89 0.01051 0.766
90 0.01018 0.776
91 0.00985 0.786
92 0.00953 0.795
93 0.00921 0.804
94 0.00889 0.813
95 0.00858 0.822
96 0.00827 0.830
97 0.00796 0.838
98 0.00767 0.846
99 0.00737 0.853
100 0.00709 0.860
101 0.00681 0.867
102 0.00654 0.874
103 0.00627 0.880
104 0.00601 0.886
105 0.00576 0.892
106 0.00551 0.897
107 0.00527 0.902
1 generation -= 2 transition events.