АвторТема: анализ фенотипической изменчивости в свете изучения ДНК  (Прочитано 1886 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн FenriRАвтор темы

  • Сообщений: 2067
  • Страна: 00
  • Рейтинг +550/-2
  • Y-ДНК: N1c1-L1025
  • мтДНК: K1a
В следующем месяце в Сент-Луисе будет проводиться очередная Ежегодная конференция американской ассоциации физической антропологии.
Вот некоторые выдержки из программы:

Цитировать
Phenotypic inference from ancient DNA

IAIN MATHIESON1, WOLFGANG HAAK4, NICK PATTERSON1,2, SWAPAN MALLICK1, BASTIEN LLAMAS4, NADIN ROHLAND1, EADAOIN HARNEY1, SUZANNE NORDENFELDT1, KRISTIN STEWARDSON1, IOSIF LAZARIDIS1, JOSEPH PICKRELL9, ALAN COOPER4, GUIDO BRANDT5, NICOLE NICKLISCH5,6, HARALD MELLER6, KURT W. ALT5,6,7,8 and DAVID REICH1,2,3. 1 Department of Genetics, Harvard Medical School, 2 Broad Institute, 3 Howard Hughes Medical Institute, Harvard Medical School, 4 Australian Centre for Ancient DNA, University of Adelaide, 5 Institute of Anthropology, Johannes Gutenberg University of Mainz, 6 State Office for Heritage Management and Archaeology Saxony-Anhalt and State Heritage Museum Halle, 7Institute for Prehistory and Archaeological Science, University of Basel, 8 Danube Private University, 9 New York Genome Center.

One of the most exciting consequences of recent developments in ancient DNA technology is that we have the ability to infer the phenotypes of ancient samples for traits that cannot be reliably inferred from skeletal remains. Important examples include pigmentation traits, dietary traits like lactase persistence and amylase copy number, and disease resistance mutations. These have relatively simple genetic architectures, but by using information from genome-wide association studies, and by genotyping many more sites, we can also predict the values of polygenic traits that are controlled by many loci, for example height, weight, and complex disease susceptibility. By investigating how they change through time, we can disentangle the effects of natural selection and population turnover in the evolution of these traits. In this study, we present genetic data from a series of samples from seven archaeologically defined cultures in central Europe, ranging from 8000BCE to present. We have genotyped these samples at 390,000 genomic loci, including 30,000 which have known phenotypic effects. We then use this data to distinguish between traits that have changed consistently with population turnovers, traits that have changed apparently neutrally, and traits that have changed dramatically due to recent natural selection. Finally, we investigate whether we can detect selection in polygenic traits like height or weight. These data demonstrate a powerful new source of information about ancient samples, and have the potential to teach us both about the specific traits of these populations, and also about the general mechanisms of evolution and adaptation in human history.

Цитировать
Genome-wide data from ancient Peruvian highlanders and the Population History of South America

LARS FEHREN-SCHMITZ1, PONTUS SKOGLUND2, BASTIEN LLAMAS3, SUSANNE LINDAUER4, ELSA TOMASTO5, SUSAN KUZMINSKY1, NADIN ROHLAND2, SUSANNE NORDENFELT2, SWAPAN MALLICK2, ALAN COOPER3, NICK PATTERSON2,6, WOLFGANG HAAK3 and DAVID REICH2,6,7. 1 Department of Anthropology, UC Santa Cruz, 2 Department of Genetics, Harvard Medical School, 3Australian Centre for Ancient DNA, University of Adelaide, 4 Curt-Engelhorn-Center for Archaeometry, 5 Departmento de Humanidades, Pontificia Universidad Católica del Perú, 6Broad Institute of Harvard and MIT, 7 Howard Hughes Medical Institute.

Despite recent advances in archaeology and population genetics, the number of human dispersals into South America and the routes these settlers took throughout the continent remains subject to controversy. The analysis of DNA from ancient human remains has proven to be an efficient tool to get insights into such ancient population dynamic processes. However, ancient DNA research in South America so far has been mostly restricted to the analysis of the mitochondrial control region and samples 5000 years old and younger. While these studies have increased our understanding of the pre- Columbian population history, inferences have been restricted to female population dynamics and have not allowed us to address relevant aspects like admixture and selection properly. Here, we present genome wide data from pre-Columbian Central Andean individuals from various archaeological sites dating from 7000 BC to 1100 AD. Ancient DNA genomic libraries were analyzed employing both shotgun sequencing and targeted hybridization capture approaches. We compare this data with published genome-wide data from ancient and modern Native American populations and reconcile our results with craniometric studies. Our results show a striking genetic continuity in the Andes over at least 8000 years despite observed changes in cranio-morphological variability. Additionally, our observations support the hypothesis of a single-wave scenario, in which the early and later populations of pre- Columbian South America derived primarily from a single source population.

ссылка на программу и на обсуждение в блоге Поляко

 

© 2007 Молекулярная Генеалогия (МолГен)

Внимание! Все сообщения отражают только мнения их авторов.
Все права на материалы принадлежат их авторам (владельцам) и сетевым изданиям, с которых они взяты.