АвторТема: Improved calibration of the human mitochondrial clock (Rieux et al. 201  (Прочитано 1014 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн ШадАвтор темы

  • Главный модератор
  • *****
  • Сообщений: 6243
  • Страна: ru
  • Рейтинг +1111/-4
  • Ex oriente lux
  • Y-ДНК: Q-Y2750
  • мтДНК: J1c2z
New estimates of human mtDNA node dates and substitution rates (Rieux et al. 2014)

This is a quite useful paper as it compares different methods of obtaining mutation rate estimates, either using "archaeological calibration" based on known migration events or ancient mtDNA genomes (with known archaeological dates). The authors write:
Our estimate of 143 Kya [112-180 95% HPD] for the TMRCA of all modern human mtDNA is slightly younger but highly consistent with the 157 Kya [120-197 95% HPD] value obtained by Fu et al. (2013b). We stimate the coalescence of the L3 haplogroup (the lineage from which all non-African mtDNA haplogroups descend), often used to date the “out-of-Africa” event, to 72 Kya [54-93 95%HPD], a value also onsistent with Fu et al. (2013b) estimation of 78 Kya [62-95 95%HPD]. This estimation rather places a conservative upper bound of 93 kya for the time of the last major gene exchange between non-African nd sub-Saharan African populations. As pointed out by Fu et al. (2013b), it is important to recognize that this divergence time may merely represent the most recent gene exchanges between the ancestors f non-Africans and the most closely related sub-Saharan Africans and thus may reflect only the most recent population split in a long, drawn-out process of population separation (Scally and Durbin 2012).
The 72kya date would agree quite well with my postulated Out-of-Arabia event circa 70 thousand years ago.

It should be fairly easy to pick out the common ancestor of Eurasian mtDNA (the common ancestor of M+N). I am reasonably sure that the two African red dots to the right of event "8" in the figure are African L3's, and this would place them within the Eurasian variation, and in particular as a relative of Eurasian M.

A similar observation could be found in Supplementary Figure 14 of the Lippold et al. (2014) preprint, with African L3 lineages clearly related to Eurasian M (and nested within the Eurasian phylogeny).

In any case, I don't see any evidence at all from this phylogeny that the date of L3 corresponds to an Out-of-Africa event. Unfortunately I couldn't see an estimate for the split of L3 from the rest of the phylogeny; my eyeball estimate from the figure is that it's about 20ky earlier. Hopefully, someone sooner or later will deal with the question of L3 phylogeny, because the "conventional wisdom" that Eurasian M, N are nested within African L3 variation does not appear to be quite right.

Mol Biol Evol (2014) doi: 10.1093/molbev/msu222


Improved calibration of the human mitochondrial clock using ancient genomes

Adrien Rieux et al.

Reliable estimates of the rate at which DNA accumulates mutations (the substitution rate) are crucial for our understanding of the evolution and past demography of virtually any species. In humans, there are considerable uncertainties around these rates, with substantial variation among recent published estimates. Substitution rates have traditionally been estimated by associating dated events to the root (e.g. the divergence between humans and chimpanzees) or to internal nodes in a phylogenetic tree (e.g. first entry into the Americas). The recent availability of ancient mtDNA sequences allows for a more direct calibration by assigning the age of the sequenced samples to the tips within the human phylogenetic tree. But studies also vary greatly in the methodology employed and in the sequence panels analysed, making it difficult to tease apart the causes for the differences between previous estimates. To clarify this issue, we compiled a comprehensive dataset of 350 ancient and modern human complete mtDNA genomes, among which 146 were generated for the purpose of this study, and estimated substitution rates using calibrations based both on dated nodes and tips. Our results demonstrate that, for the same dataset, estimates based on individual dated tips are far more consistent with each other than those based on nodes and should thus be considered as more reliable.


© 2007 Молекулярная Генеалогия (МолГен)

Внимание! Все сообщения отражают только мнения их авторов.
Все права на материалы принадлежат их авторам (владельцам) и сетевым изданиям, с которых они взяты.

Rambler's Top100